Search results for "Graded identitie"

showing 4 items of 4 documents

A note on cocharacter sequence of Jordan upper triangular matrix algebra

2016

Let UJn(F) be the Jordan algebra of n × n upper triangular matrices over a field F of characteristic zero. This paper is devoted to the study of polynomial identities satisfied by UJ2(F) and UJ3(F). In particular, the goal is twofold. On one hand, we complete the description of G-graded polynomial identities of UJ2(F), where G is a finite abelian group. On the other hand, we compute the Gelfand–Kirillov dimension of the relatively free algebra of UJ2(F) and we give a bound for the Gelfand–Kirillov dimension of the relatively free algebra of UJ3(F).

Algebra and Number TheoryJordan algebraQuaternion algebraMathematics::Rings and Algebras010102 general mathematicsZero (complex analysis)Triangular matrixgrowth of algebras010103 numerical & computational mathematics01 natural sciencesgraded Jordan algebraCombinatoricsAlgebraFiltered algebraSettore MAT/02 - AlgebraDifferential graded algebraFree algebraAlgebra representationGraded identitie0101 mathematicsMathematics
researchProduct

Y-proper graded cocharacters and codimensions of upper triangular matrices of size 2, 3, 4

2012

Abstract Let F be a field of characteristic 0. We consider the upper triangular matrices with entries in F of size 2, 3 and 4 endowed with the grading induced by that of Vasilovsky. In this paper we give explicit computation for the multiplicities of the Y -proper graded cocharacters and codimensions of these algebras.

CombinatoricsSettore MAT/02 - AlgebraAlgebra and Number TheoryMathematics::Commutative AlgebraGraded identitiesComputationPolynomial identities graded identitiesTriangular matrixPolynomial identitiesMathematicsJournal of Algebra
researchProduct

Graded algebras with polynomial growth of their codimensions

2015

Abstract Let A be an algebra over a field of characteristic 0 and assume A is graded by a finite group G . We study combinatorial and asymptotic properties of the G -graded polynomial identities of A provided A is of polynomial growth of the sequence of its graded codimensions. Roughly speaking this means that the ideal of graded identities is “very large”. We relate the polynomial growth of the codimensions to the module structure of the multilinear elements in the relatively free G -graded algebra in the variety generated by A . We describe the irreducible modules that can appear in the decomposition, we show that their multiplicities are eventually constant depending on the shape obtaine…

Discrete mathematicsHilbert series and Hilbert polynomialPure mathematicsPolynomialMultilinear mapAlgebra and Number TheoryMathematics::Commutative AlgebraGraded ringGraded codimensionsymbols.namesakeSettore MAT/02 - AlgebraPI exponentDifferential graded algebrasymbolsMultipartitionGraded identitieVariety (universal algebra)Algebra over a fieldCodimension growthMathematics
researchProduct

Gradings on the algebra of upper triangular matrices and their graded identities

2004

Abstract Let K be an infinite field and let UT n ( K ) denote the algebra of n × n upper triangular matrices over  K . We describe all elementary gradings on this algebra. Further we describe the generators of the ideals of graded polynomial identities of UT n ( K ) and we produce linear bases of the corresponding relatively free graded algebras. We prove that one can distinguish the elementary gradings by their graded identities. We describe bases of the graded polynomial identities in several “typical” cases. Although in these cases we consider elementary gradings by cyclic groups, the same methods serve for elementary gradings by any finite group.

Finite groupPolynomialPure mathematicsAlgebra and Number TheoryMathematics::Commutative AlgebraGraded identitiesMathematics::Rings and AlgebrasTriangular matrixGraded ringCyclic groupElementary gradingGraded Lie algebraUpper triangular matricesAlgebraDifferential graded algebraAlgebra over a fieldMathematics
researchProduct